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Editorial Note

The following two papers had been nearly completed by V.N. Gribov before he passed away in summer 1997. Since
these papers are the only documents on his ideas about quark confinement in QCD, the editors welcomed the proposal
to publish the two manuscripts post mortem after they were edited by his wife and some of his closest friends. Even
though Gribov’s work on quark confinement has not led yet to a generally accepted solution of this problem – in
fact some fundamental aspects are rather controversial – the publication of these unconventional and novel ideas
may initiate new theoretical developments in this area. The editors consider this point a compelling reason for the
publication of the two manuscripts in Eur. Phys. J. C.
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Abstract. A formulation of QCD which contains no divergences and no renormalization procedure is
presented. It contains both perturbative and nonperturbative phenomena. It is shown that, due to its
asymptotically free nature, the theory is not defined uniquely. The chiral symmetry breaking and the
nature of the octet of pseudoscalar particles as quasi-Goldstone states are analyzed in the theory with
massless and massive quarks. The U(1) problem is discussed.

? This work was completed in Germany under the Humboldt
Research Award Program.

† The original version of this paper, completed by the au-
thor in April 1997, was submitted to the hep-ph archive (hep-
ph/9708424) a few days after Prof. V.N. Gribov passed away
on August 13, 1997.
This is the first of two papers concluding his 20-year study
of the problem of quark confinement in QCD. This annotated
version is the result of an attempt by a group of his colleagues
to understand the paper, starting in November 1997 in Or-
say. A number of misprints were eliminated, most of the equa-
tions were checked, and some corrected. Comments have been
added in order to make the text easier to read. These comments
are displayed in square brackets. Many theorists participated
in the process; the comments were assembled, and the final
version prepared, by Yu. Dokshitzer, C. Ewerz, A. Kaidalov,
A. Mueller, J. Nyiri and A. Vainshtein.

1 Introduction

In this paper I show how to formulate an asymptotically
free theory in such a way that it includes perturbative and
nonperturbative phenomena simultaneously.

The idea is the following. Contrary to an infrared free
theory, in an asymptotically free theory, the divergences
prevent us from writing even perturbation expansions in
a unique, well-defined way. We can, however, make use of
the fact that divergences in the theory occur only in the
Green’s functions and the vertices. On the other hand,
knowing the Green’s functions and the vertices, we can
express all the other amplitudes through them perturba-
tively in a unique way. Thus, we have to formulate equa-
tions for Green’s functions and vertices in a form that
does not contain any divergences. If this is done, the so-
lutions of these equations will contain both perturbative
and nonperturbative phenomena.

To avoid technical complications, in Sect. 2 of the pa-
per we will derive these equations in an Abelian theory,
in which usual perturbation theory is also well defined. In
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Sect. 3, we generalize the equations for a non-Abelian the-
ory and discuss the connection between perturbative and
nonperturbative effects. The equations have an integro-
differential structure in which the asymptotic behaviour
of the Green’s functions is defined by the boundary condi-
tions. The main conclusion in this section is that in the re-
gion of large momenta the Green’s functions of quarks and
gluons contain additional parameters compared to normal
perturbation theory. These parameters can be associated
with different types of “condensates”. These nonperturba-
tive parameters can be defined by solving the equations
and finding nonsingular solutions in the infrared region.
A priori, it is not clear what type of additional conditions
have to be imposed on this system of equations in order to
fix a nonsingular solution. For example, it can be the con-
servation of the axial current or of other currents that is
formally satisfied from the point of view of the Lagrangian
but is not ensured because of the divergences.

In Sect. 4, we will show that these equations make
it possible, for the first time, to analyze the problem of
spontaneous symmetry breaking in an asymptotically free
theory and to find the approximate value of the critical
coupling at which symmetry breaking occurs. Also, these
equations allow us to answer the fundamental question
for asymptotically free theories, namely, how the bound
states – the hadrons – have to be treated in these theories
and how these bound states influence the equations for
the Green’s functions.

The analysis leads to the following conclusion. The
conditions for axial current conservation of flavour nons-
inglet currents (in the limit of zero bare-quark masses) re-
quire that eight Goldstone bosons (the pseudoscalar octet)
have to be regarded as elementary objects with couplings
defined by Ward identities. This is so in spite of the fact
that the couplings of these states to fermions decrease at
large fermion virtualities.

The same analysis provides a new possibility for the
solution of the U(1) problem. In this solution, the flavour
singlet pseudoscalar η′ is a normal bound state of qq̄ with-
out a point-like structure. The mass of this bound state
is different from zero and can be calculated in the limit
of massless quarks. For massive quarks, the pseudoscalar
octet becomes massive. The masses of the pseudoscalar
mesons, however, are not calculable in terms of bare-quark
masses, because of logarithmic divergences, and have to be
regarded as unknown parameters which, in the real case
of confined quarks, are defined by the self-consistence of
the solution of the infrared problem. These states have an
essential influence on the equations for the Green’s func-
tions, which, as it will be shown in the next paper, can be
used constructively in solving the confinement problem
if the effective coupling in the infrared region is not too
large. In this case, the integro-differential equations can
be reduced to a system of nonlinear differential equations,
and the theory looks like a theory of particle propagation
in self-consistent fields defined by the Green’s functions
themselves (as is the case in Landau’s Fermi liquid the-
ory). The self-consistent fields are fields of gluons and π
mesons.

2 Equations for Green’s functions in QED

In QED, we have two Green’s functions – those of the
photon Dµν(k) and electron G(q) – and a vertex func-
tion Γµ(k, q). The photon Green’s function is defined by
the vacuum polarization operator Πµν(k), which can be
expressed symbolically by a sum of Feynman diagrams

Πµν(k) = e20

{
γµ γν + γµ γν + . . .

}
.

(1)
In order to obtain series not containing divergences, we
will try to consider the derivatives of Πµν(k) as functions
of momenta. Due to current conservation, we have

Πµν(k) = (δµνk
2 − kµkν)Π(k2) , (2)

where Π(k2) contains only logarithmic divergences. Dif-
ferentiating (2) twice, we will have

∂2Πµν(k) = 6Π(k2)δµν +
(
δµν − kµkν

k2

)
(∂ξ +6)∂ξΠ(k2);

(3)
we here use

∂ξ ≡ qµ
∂

∂qµ
.

The second term in (3) does not contain divergences; the
first one does. In order to obtain a finite expression, con-
sider

∂µ∂σΠσν(k) = −3δµνΠ(k2) − 3
kµkν

k2 ∂ξΠ(k2). (4)

From (3) and (4) it follows that the quantity

∂2Πµν(k) + 2∂µ∂σΠσν(k) (5)

= −6
kµkν

k2 ∂ξΠ(k2) +
(
δµν − kµkν

k2

)
(∂ξ + 6)∂ξΠ(k2)

does not contain divergences.
In Feynman gauge, Dµν(k2) is as follows:

Dµν(k) =
δµν

k2(1 −Π(k2))
≡ 1
k2

e2(k2)
e20(k2)

δµν . (6)

Any diagram contains only the product e20Dµν(k), and
therefore

e20Dµν(k) =
1
k2 e

2(k2)δµν ,

∂ξΠ(k2) = −∂ξ
e20
e2
. (7)

In first order, this means

∂ξ
1
e2

=
1
3
kµkν

k2

{ γσ

γνγµ

γσ

+

γσ

γσ γν

γµ
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+
γν

γµ γσ

γσ

}
; (8)

the integrals on the right-hand side are convergent. This
has to hold in any order. Hence, we can include in (8)
the exact electron Green’s functions and the exact vertex
functions and add all the corresponding diagrams which
were not included. As a result, we can write

kµ∂µ
1
e2

=
1
3
kµkν

k2

∑
p

{

G

G

Γν

∂σG
−1 ∂σG

−1G

G

Γµ

+

∂σG
−1

Γµ Γν

Γρ∂σG
−1

Γρ

+ . . .

}
, (9)

where
∑

p denotes the sum over the permutations of the
indices similarly to (8); a quantity e2/k2 corresponds to
each photon line. Equation (9) is an equation for e2 (in
the form of series in e2) provided that G(k) and Γµ(k, q)
are known.

In order to obtain equations for electron Green’s func-
tions and vertex functions, we have to remember that
these functions can change rapidly, even if e2 is small,
because they can have infrared singularities of the type
e2 ln((q2 −m2)/m2) or ultraviolet singularities of the type
(α/α0)

γ . It has been proven that it is possible to arrange
the differentiation in such a way that there will be an ex-
pansion only in e2.

To write an equation for the fermion Green’s function
not containing any divergences, we have to differentiate
twice the self-energy of the fermion or, equivalently, its
inverse Green’s function. Let us consider ∂µµG

−1(q); the
diagrammatic expression for G−1 will be the following.
The simplest diagram is

.

Diagrams of the next order are

k

q
q−k

+k

q−k′−k
k′ q−k′

q−k+

.

It can be easily shown that

∂2 1
k2 + iε

= −4π2iδ4(k) . (10)

Using this equality, we have

∂2 = − e20
4π2 γµG0γµ = −g0γµG0γµ,

∂2 = −g0γµG1γµ,

∂2 = −g0 γµγµ

−g0 γµγµ
+ δ2,

∂2 = γµ

∫
d4k

4π2i
G0(q′) ∂2 g1(k

2)
k2 γµ.

Restricting ourselves to ∂21/k2, we can write

∂2σ1 = −g0γµG0γµ,

∂2σ2 = −g0γµG0∂µσ1 − g0∂µσ1G0γµ

−g0γµG1γµ − g1γµG0γµ

and, consequently,

∂2G−1 = g ∂µG
−1 G ∂µG

−1, G−1 = G−1
0 +G−1

1 +G−1
2 .
(11)

The term δ2 describes the contribution to ,
which does not contain overlapping divergences, and is of
the form

δ2 =

−2k′
σ

k′4

γσγσ

+
−2kσ

k4

+

γσ

−2kσ
k4

+

−2k′
σ

k′4

γσ

. (12)

For the calculation of higher-order diagrams, it is conve-
nient to adopt the following principle. Beginning from the
first point of interaction, we shall relate the external mo-
mentum to the photon line:

q−q′
q

q′
. (13)

The next photon interaction can be expressed as

q−q′−q′′q−q′

q′′

. (14)
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Now we relate the external momentum to the positron
line. If the positron is emitting a photon, we keep sending
the external momentum along the positron line up to its
annihilation. As a result, we get a tree structure

,

(15)
in which the initial photon line can end only at the fi-
nal electron. It can be shown that every line in the dia-
gram will be passed only once if the photons included in
the fermion self-energy are not taken into account. This
means that in this approach, exact electron Green’s func-
tions have to be used with bare vertices, since the idea is
basically the exclusion of overlapping divergences. Taking
the second derivative of one of the photon propagators and
restricting ourselves to the contribution 4π2δ4(k)g(0), we
obtain both on the left-hand side and the right-hand side
photon-emission amplitudes with zero momentum. Due
to gauge invariance, however, a zero-momentum photon
cannot change the state of the system (it is emitted from
the external lines). The photon- emission amplitude equals
Γµ(q, 0) = ∂µG

−1(q) [within this convention, the bare ver-
tex is −eγµ]. The final contribution of the differentiation
has the structure (11). The above statement, which es-
sentially means that the emission of a zero-momentum
photon is determined by the total charge, can be proven
by the Ward identity.

Thus, we have

∂2G−1 = g(0)∂µG
−1G∂µG

−1

+ . (16)

The remaining diagrams contain first derivatives of photon
and positron lines and second derivatives of positron lines.
All these diagrams can be expressed in terms of the exact
Γµ, G and D functions. They do not contain divergences,
except for those graphs which correspond to the photon
self-energy.

The first term in (16) has the structure

1
2
g(0) M̃νν(q, k = 0) ,

where M̃νν(q, k = 0) is a quantity close to the Comp-
ton scattering amplitude, in the sense that they would be
equal if we differentiated all fermion propagators including
those inside the electron Green’s function. (The factor 1/2
is present because the Compton amplitude contains the
sum of diagrams with momenta k and −k). The Comp-
ton scattering amplitude Mνν(q, k = 0) satisfies the Ward
identity

Mνν(q) = G−1 ∂2GG−1 = 2∂µG
−1 G ∂µG

−1 − ∂2G−1,

which has the simple diagrammatical meaning

k=0 k′ =0 = 2

+ . (17)

The second term on the right-hand side of (17) represents
the contribution of photons which, if we carry out the
aforementioned differentiation, corresponds to photons in-
side the Green’s function, which are not present in M̃νν .
Hence,

M̃νν(q, 0) = 2∂µG
−1 G ∂µG

−1.

All the diagrams for ∂2G−1 are of the form

.

(18)
The sum of the diagrams (18) is built up of the exact
photon Green’s functions, each of which equals (6), which
equal 4π2g(k)(1/k2). By differentiating the photon lines,
we have calculated the contribution of
∂21/k2. Thus, there remains

I = −
∫

d4k

4π2i
M̃νν(q, k)

2
∂2 g(k) − g(0)

k2 , (19)

where we have introduced g(0) in order to avoid a contri-
bution from δ4(k). This expression contains logarithmic
corrections coming from the ultraviolet region (k > q).
Replacing g(k) − g(0) by g(q) − g(0) + g(k) − g(q) and
performing an integration by parts, we get

I = (g(q) − g(0))
M̃νν(q, 0)

2

−
∫

d4k

4π2i
g(k) − g(q)

k2 ∂2 M̃νν(q, k)
2

. (20)

The first term in (20) can be explicitly calculated, while
the second one does not contain any logarithms because of
the presence of the difference g(k) − g(q). We can rewrite
(20) in the form

I ≡ (g(q) − g(0)
)
∂µG

−1G∂µG
−1 + δ1;

consequently, ∂2G−1 can be expressed as

∂2G−1(q) = g(q)∂µG
−1G∂µG

−1 + δ1 + δ2, (21)

where δ1 is defined by [the second line of] (20), and δ2
contains first-order derivatives of the photon and positron
lines and second-order derivatives of the positron lines,
as has been explained above. The first term contains all
singularities of the types α ln((q2−m2)/m2) and (α/α0)

γ .
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3 Equations for the vertex function
and for the amplitudes of interaction
with the external field

To obtain the equation for the vertex function, let us
express Γµ(p, q) as a set of diagrams containing exact
Green’s functions:

Γµ(p, q) =

p

q− p
2 q+ p

2

=

q− p
2

p

q+ p
2

q′+ p
2q′− p

2

+ + . . . (22)

We shall relate the external momenta to the lines in the
diagrams in the same way as we did when we derived the
equation for the Green’s function. Calculating the second-
order derivative in q, we obtain

∂2
qΓ

µ(p, q) = − g(0)M̃µ
νν(p, q, k)

∣∣∣
k=0

+ . . . , (23)

where M̃µ
νν(p, q, k)|k=0 is the contribution to the ampli-

tude of the process

p

q+ p
2

k1 k2

q− p
2

,

which corresponds to the emission of photons with mo-
menta k1, k2 = 0 from the external legs:

M̃µ
νν(p, q) =

∂νG
−1 Γµ ∂νG

−1

−
∂νG

−1 ∂νΓ
µ

−
∂νG

−1∂νΓ
µ

. (24)

Inserting (24) into (23) and replacing g(0) by g(q) we get

∂2Γµ(p, q) = g(q)
{
Aν(q2) ∂νΓ

µ(p, q) + ∂νΓ
µ(p, q) Ãν(q1)

−Aν(q2)Γµ(p, q) Ãν(q1)
}

+ ∂2Γ̃µ(p, q) . (25)

Here we have introduced the notations

q1,2 = q ± p

2
, Aµ(q) = ∂µG

−1(q)G(q), and

Ãµ(q) = G(q)∂µG
−1(q). (26)

The correction terms ∂2Γ̃µ are defined as a set of dia-
grams with exact Green’s functions and vertices. They
contain first-order derivatives of both the photon lines and
the positron lines, second-order derivatives of the positron
lines and, as in the case of the Green’s function, correc-
tions due to the replacement of g(0) by g(q).

The same equation is valid for the interaction ampli-
tude of fermions with the external field, provided that this
interaction does not depend on the relative momentum q
of the fermions.

The equations for the interactions with external fields
are essential. Indeed, if these equations have solutions that
decrease at large virtualities of the fermions – i.e., solu-
tions which do not require driving terms – this means the
existence of bound states.

For the sake of convenience, we rewrite the equation
(25) in the form

∂2φ(p, q) = g(q)
{
Aν(q2)∂νφ(p, q) + ∂νφ(p, q)Ãν(q1)

−Aν(q2)φ(p, q)Ãν(q1)
}
, (27)

which will be understood as the equation for the bound
state, with a spin that is defined by the invariant structure
of the matrix φ.

It is important to note that the accuracy of the equa-
tions for the vertex Γµ(p, q) and for the bound states dif-
fers from the accuracy of the equation for the Green’s
function. The functions Γµ(p, q) and φ(p, q) depend on,
among other things, the ratios p2/q21 , p2/q22 . If these pa-
rameters become large, then Γµ and φ(p, q) contain, in
general, the so-called Sudakov logarithms, which are not
included in the equations (25) and (27). Hence, the equa-
tions are valid only if

α ln
p2

q21
ln
p2

q22
< 1 . (28)

4 Equations for Green’s functions in QCD

QCD is the theory of interacting quarks and gluons. The
description of quarks is more or less the same as in QED.
Gluons, however, are very different. Even the fact that
a gluon has to have a multi-component wave function
because it is a spin-1 particle is not seen explicitly. In
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the usual approach, it is described by a Green’s func-
tion Dµν = 〈Aµ(x), Aν(y)〉, which, in momentum space
(in Feynman gauge), can always be written in the form

Dµν =
δµν

k2 C(k2). (29)

This equation contains only one unknown function. All
spin properties of the gluon are included in the momen-
tum dependence of its interaction. In order to introduce
multi-component Green’s functions, we have to formu-
late the theory such that the interaction is momentum-
independent: We have to replace the usual description
of the gluons and their interactions by a Duffin–Kemmer
type formulation. In the framework of this description, the
gluon Lagrangian is

L(x) = −{∂µAν−∂νAµ+g[Aν , Aµ]}Fµν+
1
2
FµνFµν , (30)

[where the trace over colour indices is implied]. The po-
tential Aµ and the field strength Fµν are independent
quantities. The interaction is momentum-independent and
equals [Aµ, Aν ]Fµν . In this formulation, we have three in-
dependent Green’s functions

〈Aµ, Aν〉, 〈Fµν , Aρ〉, 〈Fµν , Fρσ〉. (31)

In order to fix the gauge in a covariant way, it is, of course,
necessary to introduce ghosts by adding a gauge-fixing
term

Lg =
ζ

2
(∂µAµ)2. (32)

The three Green’s functions can be combined into one by
introducing the ten-component state [implying ρ < σ]

Ψ =
(

Aν
1
mFρσ

)
. (33)

We use the parameterm, which has the dimension of mass,
to convert the lower component of Ψ into the same dimen-
sion as the upper component. The equations for the fields
corresponding to the Lagrangians (30) and (32) are

∇νFνµ + ζ∂µ∂νAν = 0,

∂µAν − ∂νAµ + g[Aµ, Aν ] − Fµν = 0. (34)

In terms of the state Ψ , we have

βµ (i∂µ + gAµ)Ψ −mγ−Ψ − γ+

m
ζ(p̂2 − p2)Ψ = 0; (35)

p̂ ≡ iβµ ∂µ , p̂2 = −βµβν∂µ∂ν , p2 = −∂µ∂µ.

In the above equations, βµ are Duffin–Kemmer matrices
satisfying the commutation relation

βiβkβl + βlβkβi = δikβl + δklβi . (36)

These matrices connect the [four] upper Ψν and [six] lower
Ψρσ components of the field Ψ in (33),

βµ =

(
0 Sµ

(Sµ)† 0

)
.

[Their nonzero components, the 4× 6 matrices Sµ] have a
simple representation

(Sµ)ν
ρσ = i(δµρδνσ − δµσδνρ). (37)

The quantities γ± are projection operators, projected onto
the upper and lower components of Ψ .

If we want to preserve the dimension of the 〈Aµ, Aν〉
component of the free Green’s function, D0 has to satisfy
the equation[

p̂

m
− γ− − γ+

m2 ζ(p̂
2 − p2)

]
D0 =

1
m2 . (38)

The solution of this equation is

D0 =
1
p2

[
p̂

m
+ C1γ+ +

γ−
m2 (p̂2 − p2)

]
. (39)

In Feynman gauge, ζ = 1 and C1 = 1, and in Landau
gauge, C1 = p̂2/p2. The three terms in (39) correspond to
the three independent Green’s functions (31).

The vertex for the interaction of three gluons with mo-
menta p1, p2, p3, colours a, b, c, and Duffin–Kemmer in-
dices α, β, γ has the structure

Γa,α,p1;b,β,p2;c,γ,p3 =
p3

p1

p2

+
p3

p1

p2

+
p3

p1

p2

(40)

µ

ρσν
+ µ

νρσ
= βµ.

The coupling constant remains in our notation g.
Let us consider in this approach the properties of the

exact Green’s function

D−1 = k̂ − γ− − γ+ ζ(k̂2 − k2) −Σ − δζ(k̂2 − k2), (41)

k̂ =
p̂

m
,

where Σ is defined diagrammatically:

Σ = + + . . . (42)

It contains four matrix elements Σ++, Σ−+, Σ+−, Σ−−.
It can be also represented in the form

Σ = k̂Σ1 + γ−Σ2 + γ+k̂
2Σ3. (43)

The factor k̂2 in the third term is necessary to preserve
the current conservation; in the first order, the ghost con-
tributes only to Σ3.
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We added the term δζ in (41) so that we could fix the
gauge for the exact Green’s function. Instead of (41), we
can write

D−1 = Z−1
1 k̂ − Z−1

2 γ− − Z−1
3 k̂2γ+ − ζ(k̂2 − k2). (44)

The Green’s function then will be

D =
1

(Z−2
1 − Z−1

2 Z−1
3 )p2

{Z−1
1 k̂ + Z−1

2 Cγ+

+Z2Z
−2
1 k̂2γ−} +

Z2γ−
m2 , (45)

where

C = 1 +

(
k̂2

k2 − 1

)[
Z2Z

−2
1 − Z−1

3

ζ
− 1
]
. (46)

In Feynman gauge,

ζ = Z2Z
−2
1 − Z−1

3 . (47)

In order to understand the meaning of the denominator
in (45), let us consider the renormalization properties of
simple diagrams, for example Σ+− +Σ−+:

Σ+−+Σ−+ = g2
0Γ+−+

D−+

D++

Γ++−+(+ → −) (48)

where g0m is the effective bare coupling [we expect; see
(56) below]:

Γ+−+ ∼ Z−1
1 . (49)

If this is true, we have in Feynman gauge

Σ+− +Σ−+ ∼ Z−3
1 Z−1

2

(Z−2
1 − Z−1

2 Z−1
3 )2

. (50)

However, pµ∂µΣ−+ [in the manuscript, Σ−−] has to be
proportional to αZ−1

1 . This means that we have to expect

Z−3
1 Z−1

2

(Z−2
1 − Z−1

2 Z−1
3 )2

≡ α(p)
α0

Z−1
1 , (51)

i.e.,

Z2Z
−2
1 − Z−1

3 =
√
α0

α
Z−2

1 Z2 .

This is our definition of α(p). It has all known properties
of the renormalized coupling α. As a result, D can be
written in the form

D =

√
α(p2)
α0

Z2
1Z

−1
2

{
Z2Z

−1
1 k̂ + Cγ+

+(Z2Z
−1
1 k̂)2γ−

} 1
p2 +

Z2γ−
m2 . (52)

In this approach, α0 is not a quantity coming from the
normalization; it is the bare coupling. The theory has to be

defined as the limit α0 → 0. In this context, the expression
(52) has a very interesting property. In the limit α0 →
0, the Green’s function D contains only Z−1

1 and Z−1
2 .

According to (51), in this limit, Z−1
3 = Z−2

1 Z2. Because
of this, when we regard the equations for Z−1

1 and Z−1
2 as

we did for the fermionic Green’s function in QED, α0 has
to disappear. Consequently, we have equations for Z−1

1
and Z−1

2 , with α(p2) being arbitrary. The equation for
Z−1

3 will not help, for due to the equality Z−1
3 = Z−2

1 Z2,
it has to be an identity. We will see that an equation for α
appears when we will consider the correction of the order
of

√
α0.

Before formulating the equation for the Green’s func-
tion, let us see what the Ward identity looks like in this
formulation. The bare vertex is

Γ 0
µ = f̂βµ

[with f̂ the colour matrix (the structure constant)]. Con-
sider the relation between (p2 − p1)µΓ

µ(p2, p1) and the
Green’s function:

pµ · βµ = p̂2 − p̂1 = m
[
k̂2 − γ− − (k̂1 − γ−)

]
= m[D−1

0 (k2) −D−1
0 (k1)]

+mγ+ζ0[(k̂2
2 − k2

2) − (k̂2
1 − k2

1)]. (53)

Hence, at p → 0 [hereafter, ∂µ = ∂/∂pµ],

Γ 0
µ |p=0 = f̂

[
m∂µD

−1
0 +mγ+ζ0∂µ(k̂2 − k2)

]
, (54)

which is, of course, the usual complication due to the
Slavnov–Taylor Ward identity. But in this formalism, the
additional term is

−m∂µ

(
ζ0

∂

∂ζ0
D−1

0

)
.

Inserting this vertex into an arbitrary diagram, we obtain
[for the full vertex] the relation

Γµ = f̂m

[
∂µD

−1 − ζ0
∂

∂ζ0
∂µD

−1
]
. (55)

According to (44) and (47), in Feynman gauge we can
write [∂ζ ≡ ζ0∂/∂ζ0]:

Γµ = f̂m∂µ

[
(Z−1

1 −∂ζZ
−1
1 )k̂ − γ−(Z−1

2 −∂ζZ
−1
2 )

−γ+k̂
2(Z−2

1 Z2−∂ζ(Z−2
1 Z2))

]
. (56)

The quantities ∂ζZ
−1
1 , ∂ζZ

−1
2 must be calculated from the

equations for Z−1
1 and Z−1

2 . But if the equations are for-
mulated in terms of the exact Green’s functions, the de-
pendence on ζ enters only through the Green’s functionsD
which, according to (45) and (46), include ζ only through
the quantity C defined in (46). In the limit α0 → 0, how-
ever, C does not depend on ζ. Consequently, ∂ζZ

−1
1 and
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∂ζZ
−1
2 are equal to zero, and we have the following simple

relation for the vertex at zero momentum:

Γµ = f̂ m ∂µD̃
−1. (57)

Here D̃−1 is defined by (56); it does not contain gauge-
fixing terms:

D̃−1 = Z−1
1 k̂ − γ−Z−1

2 − γ+Z
−2
1 Z2 k̂

2. (58)

Let us first consider the equations for Z−1
1 and Z−1

2 in
the same way as we did for fermions. As in the case of
QED, we will use the Feynman gauge in order to simplify
the one-gluon contribution to the equation for the Green’s
function.

∂2(Z−1
1 k̂ − Z−1

2 γ−) =

= ∂2
{

p1
p

p−p1
+ p

p−p2p−p1

p1 p2

+ . . .
}
(59)

Each line in (59) contains the exact propagator (52). Dif-
ferentiating the propagator along the upper line, we obtain
the contribution corresponding to the second derivative of
one line,

∂2D = −4π2iδ4(p)γ+Z
1
2 (0) − 4pµ

p4 ∂µ

(
NZ

1
2

)

+
1
p2 ∂

2
(
NZ

1
2

)
+ ∂2Z2γ−

m2 , (60)

where

Z = Z2
1Z

−1
2
α(0)
α0

, (61)

and we introduce the notation

D =
Z

1
2

p2 N +
Z2γ−
m2 . (62)

The contribution of this derivative to the equation will
have the form

−4π2iZ
1
2M(p, p) +M1. (63)

Here M(p, p) is the gluon–gluon scattering amplitude at
zero momentum of one of the gluons. The second term,
M1, is defined diagrammatically:

M1 = .

Taking the first derivative of two different lines, we get
the contribution

M2 = + . . . . (64)

As a result, we have

∂2(Z−1
1 k̂ − Z−1

2 γ−) =
α0

π
Z

1
2M(p, p) +M1 +M2. (65)

We have to remember that on the right-hand side we must
take only the matrix elements 〈−|+〉, 〈+|−〉 and 〈−|−〉.
Writing

M(p, p) = ΓµDΓµ + M̃(p, p), (66)

and using the Ward identity (57), we obtain an equation
of the same structure as that for fermions:

∂2(Z−1
1 k̂ − Z−1

2 γ−) = f̂2α0

π

Z
1
2 (0)Z

1
2 (p)

k2 ∂µD̃
−1

×
(
N +

Z2Z
− 1

2

m2 γ−

)
∂µD̃

−1 + L; (67)

L = M̃ +M1 +M2 , f̂2 = Nc = 3.

If we now use the same trick as before, namely, we replace
Z(0) by Z(p) and redefine L, we will have, in the limit
α0 → 0,

∂2Z−1
1 [γ−, k̂] = 3

α(p)
π k2

[
γ−, ∂µD̃

−1
(
Z1k̂ + Z2

1Z
−1
2 γ+

+Z2k̂
2γ−

)
∂µD̃

−1
]

+ [γ−, L′], (68)

∂2Z−1
2 γ− = 3

α(p)
π k2 γ−∂µD̃

−1
(
Z1k̂ + Z2

1Z
−1
2 γ+

+Z2k̂
2γ−

)
∂µD̃

−1γ− + γ−L′γ−. (69)

4.1 [Equation for quark Green’s function]

The equation for the fermionic Green’s function in QCD
will differ from (21) only by the factor λaλa = 4/3 (λa are
colour matrices). The reason is the following. The deriva-
tion of the equation (21) was based on the relation be-
tween the fermionic Green’s function and the amplitude
of zero-momentum photon emission by a fermion

Γµ(q, 0) = ∂µG
−1(q); (70)

in the usual formulation, this relation is not correct in
QCD. The simple relation (57) for the amplitude of the
zero-momentum gluon emission by a gluon implies, how-
ever, that the amplitude of a zero-momentum gluon emis-
sion by a quark has to be

Γ a
µ (q, 0) = λa(Z−2

1 Z2)
1
4 ∂µG

−1(q). (71)

Together with (52), this leads to the equation (21).

4.2 [Equations for vertices]

The equation for the colourless vertices remains also the
same.

The equation for a three-gluon vertex, however, will be
essentially different. In the same way as for the fermionic
case, but taking into account the noncommutativity of the
gluon coupling, we can show that

Γνµρσ = ν(Γµ)σρ = Γ̂µ
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satisfies the following equation:

∂2Γ̂µ
(
q +

p

2
, p, q − p

2

)

=
3α
π

{
Aν(p1)

∂Γ̂µ

∂qν
+
∂Γ̂µ

∂qν
Ãν(p3) + (Aν(p))µµ′

∂Γ̂µ′

∂pν

−Aν(p1)Γ̂µÃν(p3) −Aν(p1)Γ̂µ′
(Ãν(p))µ′µ

−(Aν(p))µµ′ Γ̂µ′
Ãν(p3)

}
; (72)

Aν = ∂νD̃
−1D , Ãν = D∂νD̃

−1 ;

p1 = q +
p

2
, p3 = q − p

2
.

The right-hand side corresponds to all possible gluon emis-
sions from the external lines:

∂νΓ∂νD̃
−1

+

∂νD̃
−1∂νΓ

+

∂νΓ

∂νD̃
−1

+

∂νD̃
−1∂νD̃

−1 Γ

+

∂νD̃
−1

∂νD̃
−1 Γ

+

∂νD̃
−1

∂νD̃
−1 Γ

Higher-order terms can be written in the same diagram-
matic way.

The fourth term in (72) and in the corresponding dia-
grammatic expression equals zero at α = 0, since D̃ΓD̃ =
0 at α = 0.

The equation (72) is, indeed, quite different from the
equation for a colourless vertex. The main difference comes
from the fact that on the right-hand side, it contains
derivatives of Γ not only over q but also over p. Hence, in
order to find Γ , we have to write three different equations
for second derivatives over three different momenta.

A similar equation is valid for the quark–gluon vertex.

4.3 [Equations and boundary conditions]

Knowing the Green’s function and the vertices, one can
write all the other amplitudes for the interactions and
quarks and gluons in the usual perturbative way. These
amplitudes have no divergences and contain, inside the
gluon Green’s function, the unknown function α(p). To
formulate the theory in an unambiguous way, without any
references to the cutoff and the regularization, we have to
find the equation for α(p) as we did in QED, and learn
how to write the higher terms more elegantly and con-
structively. I postpone the investigation of this problem
for another paper. We will now discuss the main difference

between an asymptotically free theory and an infrared free
theory.

The equations for Green’s functions of quarks and glu-
ons are proven to be second-order integro-differential
equations. To solve them, we need boundary conditions.
In an infrared theory, the boundary conditions are known:
They are the conditions for the existence of free elemen-
tary particles at small momenta. In an asymptotically free
theory, the interaction is small at large momenta, and we
expect to have here a perturbative solution. However, in
the region of large momenta, all the equations have two
types of solutions: the perturbative solution and solutions
which decrease as some power of the momenta and there-
fore contain dimensional parameters reflecting the density
of different condensates. These parameters have to be de-
fined either by the introduction of additional conditions
of the type of conservation laws or by the self-consistency
of the solutions in the small-momentum region (or both).
The next section of this paper will be devoted, essentially,
to the discussion of this problem.

5 Spontaneous symmetry breaking
in asymptotically free theories

In this section we will consider the equation for the fermion
Green’s function in QCD,

∂2G−1(q) = g(q)∂µG
−1(q)G(q)∂µG

−1(q) , (73)

where

g(q) =
α(q2)
π

λaλa =
4α(q2)

3π
.

This equation has been discussed extensively in connec-
tion with the problem of quark confinement [1]. Here we
shall use the equation for the discussion of the sponta-
neous breaking of chiral symmetry in asymptotically free
theories. The asymptotic freedom is reflected in this equa-
tion by the fact that α(q2) decreases when q2 → ∞. We
will assume that in the limit q → 0, α(q2) approaches a
finite value.

g

q2

g(0)

Fig. 1.

At q2 → ∞ the solution of the equation (73) has the form

G−1(q) = Z−1
[
(m− q̂) +

ν3
1

q2
+
ν4
2 q̂

q4

]
, (74)

q̂ = γµqµ .
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If α = 0, the quantities Z, m, ν1, and ν2 are arbitrary
parameters. In the case when α(q2) is defined by pertur-
bation theory, Z,m, ν1, and ν2 are the following functions:

Z = Z0

(
α

α0

)γZ

, m = m0

(
α

α0

)γm

,

ν1,2 = ν0
1,2

(
α

α0

)γ1,2

. (75)

The anomalous dimensions γZ , γm and γ1,2 can easily be
found from (73). Generally speaking, the solution depends
on four parameters. In the limit q2 → ∞, the chiral-
invariant solution can be written as

G−1 = −Z−1q̂

(
1 − ν4

2

q4

)
. (76)

The general solution (74) corresponds to massive quarks.
In the solution that corresponds to spontaneously broken
chiral symmetry, m0 = 0. In this case the mass term de-
creases when q2 → ∞; the term ν1 is responsible for the
violation of the symmetry.

Multiplying (73) by G(q)G−1(q), we obtain the equa-
tion

∂2G−1(q) = gAµ(q)Aµ(q)G−1(q) (77)

where
Aµ(q) = ∂µG

−1(q)G(q). (78)

Clearly, (77) has a structure which corresponds to the
equation for particle propagation in the self-consistent field
gAµAµ. It is easily seen that (73) is equivalent to the equa-
tion for Aµ of the form

∂µAµ = −βAµAµ, β = 1 − g. (79)

The matrix G−1 is defined by two invariant functions, and
can be written as1

G−1 = Z−1(q)[m(q) − q̂] ≡ ρ e−n̂ φ
2 (80)

where
n̂ =

q̂

q
, q =

√
q2 .

Here Aµ is

Aµ =
∂µρ

ρ
− 1

2
n̂ ∂µφ − ∂µn̂ sinh

φ

2
en̂ φ

2 . (81)

Inserting (80) and (81) into (77), we obtain a set of non-
linear equations for ρ and φ. We can linearize the equation
for ρ by writing

ρ =
(
u

q

) 1
β

(82)

for a constant β, or

ρ =
u

q
exp

{∫
g

β

(
u̇

u
− 1
)

dq
q

}
(83)

1 [ρ can be treated as a dimensionless quantity, since the
equation (77) is homogeneous.]

for β, which is a function of q. Here,

u̇ = qν
∂u

∂qν
≡ qν∂νu =

∂u

∂ξ
, ξ = ln q.

As a result, we get for u and φ the following set of equa-
tions:

ü− u+ β2

[
3 sinh2 φ

2
+
φ̇2

4

]
u =

β̇

β
(u̇− u) (84)

φ̈+ 2
u̇

u
φ̇− 3 sinhφ = 0. (85)

For a constant β, the conservation law

∂ξE = 0

is fulfilled;

E = u̇2 − u2 + β2

[
3 sinh2 φ

2
− φ̇2

4

]
u2. (86)

The term (β̇β)(u̇−u) is of the order of g2, and can almost
always be neglected.

The asymptotic behaviour (74) of the Green’s function
in the limit q2 → ∞ (β → 1) corresponds to

u → Cq2 , φ → iπ .

The chiral-invariant solution corresponds to φ ≡ iπ. Close
to the value φ = iπ (i.e., φ = iπ+ φ̃), we have, at large q2,

u̇

u
=
√

1 + 3β2. (87)

Hence, (85) is an oscillator equation, with damping if q2
is increasing, and with acceleration if q2 is decreasing:

¨̃
φ+ 3φ̃ = −2

√
1 + 3β2 ˙̃

φ. (88)

This means that the chiral-invariant solution φ = iπ is
unstable in an asymptotically free theory.

Let us consider in detail the equation for φ at negative
q2 values. Due to (80), φ = iψ is, in this case, purely
imaginary, and (85) describes the motion of the particle as
a function of the “time” ξ in a periodic field; the damping
(or the acceleration) is defined by (87).

π

2
1

ψ

2π

ε(ψ)

Fig. 2.

At ξ → ∞ (|q2| → ∞), the particle is situated at one of
the minima of the potential; it accelerates as ξ decreases.
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The acceleration rate is defined by the parameters of the
solution (74) in the limit |q2| → ∞. When q is decreasing,
we have, generally speaking, two possible behaviours for
the solution.

If u̇/u remains positive all the time, then the solution
goes to infinity, and G develops a singularity at some Eu-
clidean q. If instead the potential u̇/u changes sign, then
the solution may again approach a minimum. In the latter
case, it is easy to see that G−1 has a singularity at q = 0.

There is only one possibile way to avoid having a sin-
gularity in the Euclidean region including q = 0. We have
to choose the parameters which determine the acceleration
at |q2| → ∞ so that the particle approaches the maximum
of the potential when q → 0 (ξ → −∞). In order to find
these exceptional solutions without singularities at q2 < 0,
it is natural to start solving the equation at q = 0 by fixing
the behaviour of the solution at ξ → −∞. The solution of
(84) and (85) corresponding to a maximum (e.g., ψ = 0)
at q → 0 is

iψ =
q

mc
, u = Z−1(0)q . (89)

In the case of such a solution, the constant E in (86) equals
zero, and

u̇

u
=

√√√√1 + β2

[
3 sin2 ψ

2
− ψ̇2

4

]
. (90)

Inserting (90) into (85) we obtain one nonlinear equation;
it can be analyzed easily for arbitrary q2 values. The so-
lution we are interested in contains essentially one pa-
rameter mc, which can be related to the renormalized
fermion mass. The parameter Z−1 is irrelevant; it defines
the normalization of the Green’s function at q = 0, and
can be chosen as 1. The solution of the equation leads
to the unambiguous determination of the asymptotic pa-
rameters of the Green’s function (74) by mc and by the
parameter λQCD of the strong interaction2 which enters
β(q) = 1 − CFα(q2)/π.

As was mentioned before, the spontaneous breaking of
chiral symmetry corresponds to an asymptotic behaviour
of G−1, in which m = 0. The existence of such a solution
requires a connection between mc and λQCD. The renor-
malized fermion mass, as well as the other condensate pa-
rameters, are then determined by the strong interaction
parameter λQCD.

Let us consider this solution in detail. Starting from
the point ψ = 0 at ξ → −∞, the solution will, obviously,
reach the minimum of the potential either monotonically
(if the damping is strong enough) or in an oscillating way.
In our case, the damping depends on the value of β. If g
is small, β is close to unity, the damping is strong, and
the solution has a monotonic behaviour. By decreasing β,
the solution may become an oscillating one. To obtain the
value of β at which the oscillation begins, there is no need
to solve the equation for all values of q. It will be sufficient

2 [λQCD is the momentum scale where the coupling in Fig. 1
becomes of order unity or, more precisely, when it reaches the
critical value (see below)]

to investigate the solution in the region where ψ becomes
close to π; here ψ = π + ψ̃, and ψ̃ satisfies the equation
(88). The solution can be written in the form

ψ̃ = e−pξC cos
(√

2 − 3β2ξ + δ
)
, p =

√
1 + 3β2 .

(91)
It oscillates if

β2 <
2
3

; gc ≡ 1 −
√

2
3
< g < 1 +

√
2
3
. (92)

Oscillations in ψ mean that the mass term in (80),

m(q) ' i
ψ̃

2
q , (93)

starts to oscillate. By solving the equation for bound states
we can check that at g > gc bound states appear with wave
functions behaving like (91); this result coincides with the
behaviour of the solution of the Dirac equation in the field
of a point-like static charge Ze when Z > 137. The sim-
plest example for such bound states are Goldstone states
the wave functions of which, as we shall see in the next
section, are proportional to m(q).

We have found the oscillations and the critical value
gc = 1 −√2/3 using the assumption that g is a constant.
In reality, g depends on q (see Fig. 1) and the situation
is somewhat more complicated; it is reminiscent of the
case of the equation for a critical charge of finite radius.
In the region of small q values, where g(q) is close to a
constant g(q) ≈ g(0), we can consider ψ as an independent
variable, and q2 as a function of ψ. It can be shown that for
g(0) satisfying the condition (92), there are two regions,
0 < ψ < π − ψc, and π + ψc < ψ < 2π in the q2, ψ plane
(Fig. 3)

π

0 q2λ2

ψ

π+ψc

π−ψc

I

II

Fig. 3.

2π

where the solution ψ(q) is monotonic, and there is a region
π − ψc < ψ < π + ψc where the solution oscillates. The
value of ψc is determined by the equality

sin2 ψc

2
=
(

2
3

− β2
)√

1 + 3β2

1 − β2

1
1 +

√
(1 + 3β2)(1 − β2)

,

(94)
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which exists if β2 < 2/3. Considering β as a function of q2
in (94) and taking into account that β2 → 1 at |q2| → ∞,
we obtain a region bounded by the dashed curve and the
vertical axis where the solution oscillates. There are no
oscillations if |q2| > λ2

QCD (β2(λ2
QCD) = 2/3). Due to (74)

and (75), we can write, in the region |q2| � λ2
QCD,

i
2

(ψ − π) =
m0

q

(
α

α0

)γm

+
ν3
1

q3

(
α

α0

)γ1

. (95)

If β2 > 2/3, the solution which equals iψ = q/mc at
q → 0 transforms monotonically into (95), with m0 6= 0.
If β2 < 2/3, ψ(λ2

QCD) and ψ̇(λ2
QCD) start to oscillate as

functions of mc, and m0 can turn into zero at a certain mc

value. This means that we have a solution corresponding
to broken chiral symmetry.

If m0 = 0, there exist also a large number of solutions
depending on the parameters ν1 and ν2. With the same
sign of ν1, we can have different solutions corresponding
to the curves I and II, which, in the limit q → 0, reach
ψ = 0 and ψ = 2π, respectively. The solutions ψ(0) = 2π
correspond to smaller values ν1, mc.

Let us consider the solutions of types I and II in detail
for complex q – this is justified since G−1 has to satisfy
the requirements of analyticity and unitarity. We will show
that both solutions have singularities at positive real q2
values. The solutions are chosen in such a way that they
are regular as q → 0 and have no singularities at q2 < 0.
Due to the analyticity of the equations, the behaviour of
the solution for q2 > 0 can be found by solving (85) and
(90) with the same boundary conditions at q → 0.

If β is fixed, the equations (84) – (86) can be rewritten
in a simpler form. We denote

u̇

u
= p(φ).

Then
∂p

∂φ
= −β

√
p2 + 3β2 sinh2 φ

2
− 1 (96)

φ̇ =
2
β

√
p2 + 3β2 sinh2 φ

2
− 1 (97)

with the boundary condition p = 1 at φ = 0 for a type-I
solution.
[Equation (97) solves (86) for E = 0. Equation (96) follows
from (97), and

ṗ = 1 − p2 − β2

(
φ̇2

4
+ 3 sinh2 φ

2

)
,

which is equivalent to (84) for β̇ = 0.]
The phase diagram corresponding to (96) is shown in
Fig. 4, where the solid line represents the solution of the
equation

p2 = 1 − 3β2 sinh2 φ

2
. (98)

The function p = p(φ) is shown by the dashed line in
Fig. 4.

Fig. 4.

φ

p

The φ dependence of p at φ → ∞ is different for β > 1/2
and β < 1/2. In both cases, φ approaches infinity at finite
ξ values. At β > 1/2, φ → ∞, we have

∂p

∂φ
= βp, p = −C

2
eβφ; C > 0 , (99)

and at β < 1/2, φ → ∞,

p = −2β2C1e
φ
2 , C1 ≡ 1

2

√
3

1 − 4β2 . (100)

The equation (97) enables us to find ξ as a function of φ:

ξ = ξ∗ − β

2

∫ ∞

φ

dφ′√
p2(φ) + 3β2 sinh2 φ

2 − 1
. (101)

The integral in (101) converges in both cases (β > 1/2
and β < 1/2); because of this, φ goes to infinity at a finite
ξ = ξ∗ (q → m∗). Near q = m∗ at β > 1/2 (g < 1/2) we
have

u = u0

√
1 − q

m∗ , e− φ
2 =

{
C
(
1 − q

m∗
)} 1

2β

, (102)

and, consequently,

G−1(q) = Z−1
0

{(
1 − q

m∗
) 1

β q + q̂

2
+
(

1
C

) 1
β q − q̂

2

}
.

(103)
If β < 1/2 (g > 1/2),

u = u0

(
1 − q

m∗
)2β2

, e− φ
2 = C1

(
1 − q

m∗
)
, (104)

and thus

G−1(q) = Z−1
0

{(
1 − q

m∗
)2β+1 q + q̂

2

+
(
1 − q

m∗
)2β−1 1

C2
1

q − q̂

2

}
. (105)
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It can be shown that the relation between the quantity
mc and the position of the singularity at q = m∗ of the
Green’s function can be written as

ln
m∗

mc
=
∫ ∞

0
dφ


 β

2
√
p2(φ) + 3β2 sinh2 φ

2 − 1

− 2
sinh 2φ

]
. (106)

The formulas (103) and (105) define the behaviour of
G−1(q) near the singularity for a solution of type I.

In order to obtain the behaviour of G−1 near the sin-
gularity for a solution of type II, it is sufficient to notice
that at q → 0, such a solution has the form

φ = 2πi − q

m′
c

. (107)

The replacement of φ by φ + 2πi changes only the sign
of G−1. Replacing q/mc by −q/m′

c and solving (96) and
(97) for q > 0, we will find φ to be negative, and near the
singularity, φ will go to −∞. This means the following: If
the first term G−1

+ (q) of the expression

G−1(q) = G−1
+ (q)

1
2

(
1 +

q̂

q

)
+G−1

− (q)
1
2

(
1 − q̂

q

)
(108)

equals zero for the type-I solution at q = m∗, then G−1
− is

zero for the type-II solution at q = m
′∗.

If q2 > m∗2, both solutions become complex:

φ = − 1
β

ln
[
C
( q

m∗ − 1
)]

+
iπ
β

, β >
1
2

φ = −2 ln
[
C1

( q

m∗ − 1
)]

+ 2iπ , β <
1
2
. (109)

The trajectories of φ(q) at 0 < q < ∞ in the complex plane
φ are shown in Fig. 5 for the type-I and -II solutions [for
β > 1/2].

2iπ

Fig. 5.

I’

I

II’

II

0

iπ

The type-I solution has a remarkable feature: Im(φ) > π
for any q > m∗ values. Hence, taking φ = φ1 + iφ2, the
imaginary part of m(q) in (80),

Im(m(q)) = q Im
(

cosh 1
2 (φ1 + iφ2)

sinh 1
2 (φ1 + iφ2)

)

=
−q sinφ2

2| sinh 1
2 (φ1 + iφ2)|2

, (110)

turns out to be positive. At the same time, Im(m(q)) for
the type-II solution is an oscillating function; this can
lead to a contradiction of the unitarity condition for the
Green’s function.

For complex q values, G−1(q) has no singularities. If we
move in the complex plane along an arbitrary ray [from the
origin to infinity], the trajectory of φ(q) does not approach
infinity (curves I’ and II’).

The main result of this section is the following: In the
framework of the equation for the fermion Green’s func-
tion (73) there exist solutions corresponding to broken
symmetry, provided g(q) has an asymptotically free be-
haviour and g(0) > 1 −√2/3. These solutions behave, at
q2 → ∞, as

G−1(q) = Z

[
ν3
1

q2
− q̂

(
1 − ν4

2

q4

)]
. (111)

The expression (111) has a mass term decreasing at infin-
ity.

6 Axial current conservation
and Goldstone states

If a fermion Green’s function corresponds to symmetry
breaking, it is natural to expect the existence of
Goldstone-type bound states. This expectation is
connected with the belief that if m0 = 0, the axial current
has to be conserved. This is, however, not necessarily true;
because of divergences in the theory, a leakage of the cur-
rent into the region of the ultraviolet cutoff is possible. A
typical example of this phenomenon is the anomaly. But
even in a nonanomalous case, it is not obvious whether
the current conservation is implied by the equation for
the Green’s function or is imposed as a condition on the
solution of the equation. In order to clarify this, let us con-
sider the equation for the bound state φ, supposing that
it is a pseudoscalar.

∂2φ(p, q) = g(q)
{
Aµ(q2)∂µφ(p, q) + ∂µφ(p, q)Ãµ(q1)

−Aµ(q2)φ(p, q)Ãµ(q1)
}
. (112)

This equation has to have a solution decreasing for large
q2 at p2 = 0. It is easy to see that there indeed exists such
a solution. At p = 0, the equation for φ is an equation for
the variation of a function which satisfies the equation for
G−1. If this variation is taken in the form φ = C{γ5, G

−1},
φ obviously satisfies the equation and decreases at |q2| →
∞ as

φ → C
2ν3

1

q2
γ5 . (113)

However, this does not mean that we have particles with
p2 = 0. Indeed, the equation (112) has a solution decreas-
ing at |q2| → ∞ for any p2 values. The reason for this is
that the equation is highly degenerate. It has a solution
of the form

φ = O1G
−1(q1) +G−1(q2)O2 , (114)
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where O1 and O2 are any combinations of Dirac matrices
with coefficients not depending on q. This can be checked
by directly substituting (114) into (112) and using the
equation for G−1. The reason for this degeneracy is the
invariance of the equation (112) under Lorentz transfor-
mations, under all discrete symmetries of the Dirac equa-
tion and, for g = const, even scale invariance and trans-
lational invariance in momentum space. If, for example,
O1 = O2 = γ5, then, due to the Ward identity,

pµΓ
5
µ(p, q) = γ5G

−1(q1) +G−1(q2)γ5 , (115)

φ = γ5G
−1(q1) +G−1(q2)γ5 (116)

is the divergence of the axial current. Hence, if (112) is
satisfied for pµΓ

5
µ , it has to have the solution (115).

In order to show that (112) has a decreasing solution at
|q2| → ∞ for any p value, we first notice that in Euclidean
space, this equation has the structure of the Schrödinger
equation

(−∂2 + U)Ψ = εΨ, (117)

in four dimensions at ε = 0, with a potential depending on
q, spin variables, and the external vector p. For such a po-
tential, the total four-dimensional angular momentum is
not conserved; only its projection µ onto pν is. An equa-
tion of this type always has nonsingular solutions with
incoming waves of given µ, e.g., considering an incoming
wave with µ = 0 for the pseudoscalar φ, we will have a
solution

φ0 = γ5C0 + decreasing scattered waves

at q2 → ∞. Or, taking an incoming wave of the form
γ5pµγµ ≡ γ5p̂, we will have

φ1 = γ5p̂+ decreasing scattered waves.

Suppose we found the solution φ1. Then, due to the fact
that for q → ∞ the solution (115) behaves as

γ5G
−1(q1) +G−1(q2)γ5 → Z−1

(
γ5p̂+

2γ5ν
3

q2

)
, (118)

we will find that

φ = Z−1φ1 − γ5G
−1(q1) −G−1(q2)γ5 → −2Z−1γ5ν

3

q2

(119)
is decreasing, with |q2| → ∞ at any p.

By stating that the equation for bound states has a
solution at any value of p, we do not mean that there
are no bound states; we mean only that the mass of the
bound state has to be calculated independently. The most
natural way to do this is to calculate the self-energy of the
state

Σ(p) =
ϕ ϕ

(120)

and to solve the equation

Σ(p) = 0 . (121)

Alternatively, one can calculate the forward Compton
scattering of the bound state on a fermion,

ϕϕ

ϕϕ
,

(122)
and then integrate over the distribution of fermions in
the vacuum. But this way, we will never get a massless
Goldstone state. The reason for this is that (120) and (122)
contradict the condition of axial current conservation.

Let us consider the condition for current conservation
in detail. If we introduce Γ̃ 5

µ as a set of diagrams

Γ̃ 5
µ = γµγ5 +

γµγ5
+ . . . = (123)

with a massive fermionic Green’s function, it will not sat-
isfy the Ward identity. However, the Ward identity will be
satisfied by the sum of Γ̃ 5

µ and of the Goldstone contribu-
tion:

Γ 5
µ =

q1q2

p

+

fpµi

g
q1q2

, (124)

namely [p = q1 − q2],

pµΓ
5
µ = pµΓ̃

5
µ − ifg = γ5G

−1(q1) +G−1(q2)γ5 . (125)

Here g is the Yukawa coupling of a Goldstone boson to
a fermion [and f is related to g via the fermion-loop dia-
gram]

ifpµ = γµγ5 g. (126)

Knowing pµΓ̃
5
µ , we can define the Yukawa coupling g by

(125) and (126). Let us apply the operator −∂2 + U to
(125). We find that gf satisfies the equation (112), since
pµΓ̃

5
µ and the right-hand side of (125) satisfy the same

equation. But the existence of (124) implies that the mass
of the Goldstone boson has to be zero.

In order to clarify the situation with Compton scatter-
ing, let us consider the Ward identity for the amplitude

Γ 5
µ(q2, q1, k) =

q1
q2

k
µ k′

(127)

where the dashed line with the momentum k′ corresponds
to the axial current, the wavy line with momentum k
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to the Goldstone state, and the other two lines to the
fermions. The Ward identity for this amplitude is

k′
µΓ

5
µ(q2, q1, k) =

k
k′

γ5 g(k, q1)
q1

+
γ5

q2

g(q2, k)

k′

. (128)

To fulfil (128), Γ 5
µ(q2, q1, k) has to be

Γ 5
µ(q2, q1, k) =

g(q1, k)

k

q1

k′

q2

Γ 5
µ +

k′

q1

Γ 5
µ

k

q2

g(q2, k)

+

Λ(q2, q1, k′, k)

k

k′

; (129)

here Γ 5
µ is defined by (124). Using (124) and (128), we

obtain
ifΛ = γ5g(k, q1) + g(q2, k)γ5 . (130)

At large q21 , q22 values we will have

g = i
2γ5

f

ν3

q2
; Λ =

4ν3

f2q2
. (131)

This means that, as in the case of asymptotically nonfree
theories, the Goldstone–fermion scattering amplitude does
not depend on the momentum of the Goldstone boson; it
decreases only as a function of fermion virtuality. Under
these circumstances, it is obvious that even in an asymp-
totically free theory, the Goldstone boson has a kind of
point-like structure.

Amplitudes for the interactions of many Goldstones
with fermions can be found in an analogous way, and have
the same property [the property of being independent of
the Goldstone momenta]. The self-energy of the Goldstone
state is now different from (120). It contains two terms

Σ(p) = g g +
φ

(132)

and equals p2 at small p2.

As we already have said, in this approach the Ward
identity becomes the definition of the Yukawa coupling g
(the wave function of the Goldstone boson) through pµΓ

5
µ

which has a clear diagrammatic meaning. The equation
contains the amplitude f of the transition between the
Goldstone and the axial current. The expression (126) for
fpµ is highly symbolic, because it contains overlapping
divergences. In order to write a sensible expression we
can use the same procedure as in Sect. 2 where we cal-
culated the polarization operator of the photon. Applying
the Ward identity, we can write, instead of (126),

f2pµ = γµγ5 Γ̃ 5
ν pν . (133)

Differentiating (133) over p, we will get, for p = 0,

f2δµν = γµγ5 γνγ5 . (134)

[This diagrammatic expression contains exact fermion
propagators and bare vertices.] If we want to get rid of the
γ5-s, we have to commute γ5 with the Green’s functions
and the interaction vertices along one of the fermionic
lines. Doing this, we obtain

f2δµν = γµ γν + γµ

{γ5, G
−1}γ5

γν

− γµ

{γ5, G
−1}{γ5, G

−1}

γν . (135)

Due to the conservation of the vector current, the first two
terms in (135) are zero at p = 0. The first one is just the
photon polarization operator at p = 0, the second one is
the amplitude for the decay of a zero-momentum scalar
into two zero-momentum photons.

The last term looks like the zero-momentum pseudo-
scalar-photon scattering amplitude which also has to be
zero. This, however, is not true, because it does not con-
tain all the necessary diagrams. Observing that this term
does not contain overlapping divergences we can write

−4f2 = ∂µG
−1

{γ5, G
−1} {γ5, G

−1}
∂µG

−1

+∂µG
−1

{γ5, G
−1} {γ5, G

−1}
∂µG

−1
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+ ∂µG
−1

{γ5, G
−1} {γ5, G

−1}
∂µG

−1 + . . .(136)

In the zeroth order in α/π,

f2 =
1
4

∫
d4q

(2π)4i
Tr
({iγ5, G

−1}G {iγ5, G
−1}

× GAµ(q)Aµ(q)) . (137)

7 Flavour singlet and flavour nonsinglet
Goldstone states: The U(1) problem

Up to now we have discussed the Goldstone states in a rel-
atively abstract way, without fixing the concrete asymp-
totically free theory. In real QCD, we have quarks with
different flavours and there is a difference between flavour
singlet and flavour nonsinglet states. In order to clarify the
picture it will be useful to describe the Goldstone state in
a different way.

The previous discussion shows that the Goldstone
states in asymptotically free and nonfree theories are
rather similar. Therefore it is natural to try to introduce
the Goldstone boson in the usual way, as a point-like state,
and to see how this state will interact. In the usual discus-
sion of a Goldstone particle, it is we supposed that there is
a point-like pseudoscalar interaction between this particle
and a fermion with the pseudovector coupling

p
= p̂γ5

1
f0
. (138)

This interaction induces the radiative correction to the
propagator D(p2) of the pseudoscalar

D(p2) = + + . . . ,

(139)
where the wavy line describes the bare pseudoscalar
Green’s function D0. If the fermion is massless and the
axial current is conserved, this pseudoscalar will not in-
teract; its self-energy,

Σ(p2) =
1
f2
0
pµγµγ5 pν Γ̃

5
ν ≡ pµpνσµν ,

(140)
is equal to zero. If, due to symmetry breaking, the fermion
becomes massive, it starts to interact, and acquires a self-
energy different from zero. By using the diagrammatic def-
inition of Γ̃ 5

µ [see (133)], we will find

Σ(p2) =
p2f2

f2
0
, (141)

where f is the same amplitude for the Goldstone-current
transition as what was discussed in the previous section.
Hence,

D(p2) =
f2
0

D−1
0 f2

0 − p2f2
. (142)

In the limit f0 → 0, we will have

D(p2) = − f2
0

p2f2 . (143)

The pseudovector interaction between the Goldstone and
the fermion is 1

f pµΓ̃
5
µ , with a pseudovector coupling 1/f

defined by the fermion mass. The limiting procedure f0 →
0 can be understood if we accept that the interaction
responsible for symmetry breaking changes the fermion-
vacuum fluctuations not only at finite momenta, but also
near the ultraviolet cutoff. This change in the fermion vac-
uum fluctuations is responsible for the leakage of the axial
current in [from] the region of finite momenta; it can pro-
duce the driving term for the Goldstone state, recovering
the current conservation.

In general, the pseudovector coupling has a disadvan-
tage compared to the pseudoscalar coupling that we dis-
cussed before: It looks unrenormalizable. But in the case
of flavour nonsinglet states, it can always be replaced by
the pseudoscalar coupling with the help of the trivial re-
lation [p = q1 − q2]

−p̂γ5 =
(
q̂2 −m(q2)

)
γ5 + γ5

(
q̂1 −m(q1)

)
+m(q2)γ5 + γ5m(q1) , (144)

which leads to the Ward identity (125) for pseudoscalar
coupling. If we include the emission and the absorption of
Goldstone bosons inside the diagram, then in the process
of this replacement, a point-like amplitude appears which
corresponds to the quark interaction with many Goldstone
bosons. Nevertheless, I believe it is possible to prove that,
due to the decrease of these amplitudes as functions of
quark virtuality, the theory is renormalizable.

Due to the anomaly, the case of a flavour singlet cur-
rent is very different, even on the level of the Goldstone
Green’s function. In this case the corresponding polariza-
tion operator Σ will contain not only the quark loop which
we have discussed, but also a gluonic contribution

Σ(p2) =

+
p

. (145)

The triangle diagram fµν present in (145) was calculated
many years ago by Adler, Bell and Jackiw [3]:

fµν =
α

π
εµνρσk1ρk2σ. (146)

With this expression for fµν , Σ(p2) still has the form (141)
but it will be quadratically divergent, and

f2 = f2
qq̄ +

(α
π

)2
Λ2

UV → ∞ , (147)

where ΛUV is the ultraviolet cutoff. This means that Gold-
stone particles exist in the anomalous case, but they are
decoupled from all physical states. At the same time, the
Ward identity still makes sense, because the product gf
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does not depend on f . Nevertheless, the concrete form
of the Ward identity will change. The reason for this is
again the Adler–Bell–Jackiw anomaly [3]. For the triangle
diagram

∆µ
ρσ =

γµγ5

σρ

, (148)

the replacement of the pseudovector coupling by the pseu-
doscalar coupling gives an incorrect result: Instead of the
correct expression

pµ∆
µ
ρσ =

2mγ5

k1k2

+
α

π
ερσδγk2δk1γ , (149)

which was obtained in [3], we get just the first term. We
can try to write the Ward identity using (149), but this
turns out not to be necessary. The reason is that, in this
approach, the axial current Γµ

ρσ between gluonic states,
defined symbolically by the relation

Γµ
ρσ = Γ̃µ

ρσ +
fpµi

gρσ

(150)

where the term Γ̃µ
ρσ is defined diagrammatically, and gρσ =

(pν/if)Γ̃ ν
ρσ is just the transverse part of Γ̃µ

ρσ:

Γµ
ρσ = Γ̃µ

ρσ − pµpν

p2 Γ̃ ν
ρσ. (151)

The axial current between quark states Γ̃µ can be written
as

Γ̃µ = ˜̃Γ
µ

(q2, q1) + Γ̃µ
g (q2, q1). (152)

Here

˜̃Γ = + . . . (153)

is the same set of diagrams as in the nonsinglet case, and
Γ̃µ

g is the axial current of gluons

Γ̃µ
g =

p

+

p

+ . . . . (154)

In the same way, the Goldstone–quark interaction can also
be divided into two parts. In the first part, we can replace
the pseudovector coupling by the pseudoscalar coupling.
The second part is the longitudinal part of Γ̃µ

g . Conse-
quently,

Γµ = ˜̃Γ
µ

+
fpµi

g

+ Γ̃µ − pµpν

p2 Γ̃ ν , (155)

and the Ward identity can be written in the form

pµ
˜̃Γ

µ

− ifg = γ5G
−1(q1) +G−1(q2)γ5. (156)

This expression enables us to answer the question: What
happens with particles like η′, which would be Goldstone
states if we did not take into account that they can de-
cay into two gluons? Let us consider the contribution of
the massive pseudoscalar flavour singlet particle η′ to the
Ward identity (156). The divergence pµ

˜̃Γ
µ

has a pole cor-
responding to η′:

pµ
˜̃Γ

µ

=

gη′

gη′

p

= i p2fη′
1

µ2 − p2 gη′ . (157)

The Yukawa coupling of the Goldstone state also has a
pole:

−i fg =

{γ5, G
−1}

gη′

gη′

= {γ5, G
−1(q)} gη′

1
µ2 − p2 gη′ .

(158)
The right-hand side of (156), however, has no poles. This
condition can be satisfied if

µ2fη′ = {iγ5, G
−1(q)} gη′ . (159)

The same Ward identity (156) [substituting (157) and
(158), and using (159)] gives, at p2 = 0,

fη′gη′ = {iγ5, G
−1(q)} , (160)

from which it follows that µ2 for η′ is3

µ2
η′ =

{iγ5, G
−1(q)} {iγ5, G

−1(q)}
f2

η′

= gη′ gη′ . (161)
3 [The overall sign in the following equation differs from that

in the original manuscript.]
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This means that η′ has acquired a mass due to the tran-
sition into a Goldstone boson, which itself is decoupled.

It is interesting to notice that at relatively small µ2,
when the comparison between Ward identities for different
values of p2 (p2 = µ2, p2 = 0) makes sense, (161) gives us
the same result as (120) (without the additional point-like
term that is present in the π-meson case (132)). Indeed,
for (120) we can write

g

Σ(p)
g = +

− = 0 .

The sum of the first two terms is equal to p2 (as in (132))
and therefore

p2 = µ2 = ≈ −g g

∣∣∣∣∣
p=0

, (162)

in agreement with (161)4. We see that the subtraction
term in the π-meson self-energy, reflecting the quasi-local
structure of the pion, disappears in the case of η′. In this
sense, η′ is a normal bound state without a point-like
structure.

The approach we presented here for the resolution of
the U(1) problem is technically very close to the approach
developed by Veneziano [4], but the underlying physics
differs essentially. In Veneziano’s approach big long-range
fluctuations are responsible for the η′ mass. In our ap-
proach, η′ is a normal qq̄ bound state with no local struc-
ture which would be responsible for its small mass if it
were a Goldstone state. This local structure is destroyed
by the decay on hard gluons.

8 QCD with massive quarks

We have discussed in detail an asymptotically free theory
with massless fermions. We came to the conclusion that
in order to obtain the correct spectrum of Goldstone par-
ticles, axial current conservation has to be imposed on the
theory. QCD, however, contains massive quarks and the
same spectrum of massive quasi-Goldstone particles (the
pseudoscalar octet) as the theory with massless quarks.
The problem is how to impose the condition of axial cur-
rent conservation on a theory which obviously does not
conserve the axial current. Strictly speaking, I don’t know
how to do this. For our real world, however, there is a
natural possibility to solve the problem.

In the real world, QCD is part of the standard model
describing strong, electromagnetic, and weak interactions.
In the standard model, all particles are supposed to be in-
trinsically massless and their masses appear as the result

4 [Notice however that the expressions (161) and (162) have
different signs; see the previous footnote.]

of symmetry breaking due to some kind of Higgs mecha-
nism with or without elementary Higgs particles. The pos-
sibility of such a mechanism is guaranteed by the conser-
vation of the left-handed SU(2)-current ja

µ. For the matrix
elements Γµ

a of this current between any two quarks with
momenta q2, q1, we have the Ward identity [p = q1 − q2]

pµΓ
µ
a (q2, q1) = G−1(q2)

1 − γ5

2
τa
2

− 1 + γ5

2
τa
2
G−1(q1) .

(163)
In the case of massive fermions, pµΓ

µ
a contains the con-

tribution of three Goldstone bosons responsible for the
masses of W± and Z0:

pµΓ
µ
a = pµΓ̃

µ
a − fga ,

[
ga =

τa
2
g
]
. (164)

For large q2 values, G−1 contains a massive term Z−1m0.
Hence, at large q2 we have

(fga)0 =
1
4
{
τaγ5,m0Z

−1}+
1
4
[τa,m0Z

−1]. (165)

At small q2 of the order of the QCD scale, fg is defined
by the total quark mass m(q), which, for the light quark,
is much larger than m0. Using the relations (163)–(165)
we can calculate the masses of the pseudoscalar octet in
the same way as we did for η′.

Suppose there is a bound state of light quarks which is
a pseudoscalar particle (the π meson) with a finite mass
µ. The pole corresponding to this particle will contribute
to both terms in (164). With this pole contribution, pµΓ̃

µ
a

and fg can be written in the form [with np standing for
“non-pion” or “non-pole”]

pµΓ̃
µ
a =

gπ

gπ

pµΓ
µ

+ (pµΓ̃
µ
a )np

= fπp
2 1
µ2 − p2 g

a
π + (pµΓ̃

µ
a )np , (166)

fga =

gπ

gπ

(fg)0

+ (fga)np

= (fga)0 gb
π

1
µ2 − p2 g

b
π + (fga)np . (167)

As in the case of η′, the condition for the pole cancellation
gives us the value of µ2:

µ2 · δab =
1
fπ

(fga)0 gb
π. (168)
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At p2 = 0, we have

fπg
a
π + (fga)np =

1
4
{
τaγ5, m̂(q)Z−1}+

1
4
[
τa, m̂Z

−1] .
(169)

[Here m̂ is the light-quark mass matrix, m̂ = ms

+(1/2)(mu − md)τ3, with ms = (1/2)(mu + md).] The
Yukawa coupling gπ of the bound state has to decrease at
large q2. Therefore we have to identify (fg)np with (fg)0.
Then

fπg
a
π =

τa
2
γ5ms(q)Z−1 , (170)

where ms(q) is the isotopically invariant part of the quark
mass term behaving at q → ∞ as ν3/q2. Finally, (fg)0 ∝
m0 is defined by weak interactions with Goldstone states,
and fπgπ ∝ ms is determined by pion exchange. The
conclusion of these considerations is that in the case of
massive quarks the conservation of the left-handed SU(2)
current can play the same role for the calculation of the
coupling and the masses of the flavour nonsinglet pseu-
doscalar particles as does the conservation of the axial
current in the massless case. The result is that the masses
become different from zero, while the Yukawa coupling
remains the same at least for small m0 values.

The expression (168) for µ2 can be also obtained with-
out reference to the current conservation, just by calcu-
lating Σ(p) as it is defined in (132) for the quark mass
ms + m0, keeping only the term linear in m0. This is in
agreement with the idea that m0 affects the mass of the
Goldstone state but not its wave function, an idea which
always has been the common belief.

It is not trivial that if we calculate µ2 by using (168)
or (132), we get a logarithmic divergence. For the π-meson
mass, the main divergent part is

m2
π =

3
4π2

1
f2

π

∫ ∞

ν2
0

d(q2)
q2

m0(q) ν3(q) (171)

(here ν0 is of the order of λQCD).
In the standard model, the behaviour of m0 and ν3 can

be calculated in a fantastically wide region of q2: From 1
GeV up to the scale where one of the couplings of the stan-
dard model (the U(1) coupling g1, the Yukawa coupling h,
or the coupling of the self-interaction of the Higgs parti-
cles, λ) becomes of the order of unity. If the U(1) coupling
g1 is the first to become large, which seems natural, this
scale is ΛUV ' 1038 GeV.

At q2 > Λ2
UV, the behaviour of m0 and ν3 is unknown.

Because of this, mπ is not calculable in principle, and
has to be considered as an arbitrary parameter. If we as-
sume, however, that at q2 larger than ΛUV, m0(q) and
ν3(q) vanish, we will be able to calculate mπ and, surpris-
ingly, this calculation gives a reasonable value for mπ with
ΛUV ' 1038 GeV [2]. The expression (171) for m2

π is also
in agreement with the naive expression

m2
π =

2m0

f2
π

〈Ψ̄Ψ〉.

The important difference is that now 〈Ψ̄Ψ〉 is determined
not only by strong but also by weak interactions: It goes
to infinity if the weak interaction is removed.

9 The pion contribution to the equation
for light-quark Green’s functions

From the previous discussion, it is obvious that the small-
mass pion contribution has to be included in the equation
for the light-quark Green’s function. Fortunately this is
very easy to do. Having in mind that now the diagrams
contain not only the gluon contribution but also the emis-
sion and the absorption of pions, we will find that, as
before, the main contribution to ∂2G−1 comes from the
simplest diagram with the coupling {iγ5, G

−1}
at zero momentum, instead of the gluon coupling ∂µG

−1.
This leads to the following equation for the Green’s func-
tion:

∂2G−1(q) = g∂µG
−1(q)G(q)∂µG

−1(q) (172)

−{iγ5, G
−1}G(q){iγ5, G

−1} 3
16π2f2

π

.

The equation for bound states (27) has to be changed also.
The correction comes from the diagrams

π
ϕ

+

π

λ

+

π
λ

.

Instead of (27), we will have

∂2φa(p, q) =

= g(q){Aν(q2)∂νφ
a(p, q) + ∂νφ

a(p, q)Ãν(q1)

− Aν(q2)φa(p, q)Ãν(q1)} (173)

+
1

4π2f2
π

[
{iγ5, G

−1(q2)}G(q2)
τb
2

× φa τb
2
G(q1){iγ5, G

−1(q1)}

− λG(q1){iγ5, G
−1(q1)}τa2 − {iγ5, G

−1(q2)}G(q2)
τa
2
λ
]
.

Here λ is the emission amplitude of the zero-momentum
pion in the transition of the bound state to the qq̄ pair.
This amplitude has to be defined by the axial current
conservation. There is another important quantity in this
equation, namely, fπ. In Sect. 6, we have written an ex-
plicit expression for f2

π , including only the gauge field con-
tribution and ignoring the pion contribution. Now we in-
clude the pion contribution in the equation for the Green’s
function and, to be self-consistent, we have to do the same
for f2

π . I was not able to carry this out in any order in the
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Yukawa coupling, but in the first order in g2, the equation
(136) is correct if one adds the diagrams

{γ5, G
−1}

∂µG
−1

g

∂µG
−1

g {γ5, G
−1}

+{γ5, G
−1}

∂µG
−1∂µG

−1

{γ5, G
−1}. (174)

As we see, the gluonic correction of the order of α/π and
the pionic correction of the order of g2 have the same
diagrammatic structure. In order to estimate the value of
these corrections, let us take just the contributions of zero-
momentum gluons and pions to them. It can be shown
that the contribution of zero-momentum gluons cancels
in the last two diagrams of (136). Zero-momentum pion
contribution comes only from the first diagram of (174).
Transferring the differentiation from the fermionic line to
the pionic line in this diagram, we obtain the contribution
of zero-momentum pions in the form

{γ5, G
−1} gg {γ5, G

−1} 1
8π2 . (175)

The expression for f2
π , which includes the zero-momentum

pion contribution, is

8f2
π =

∫
d4q

(2π)4i
Tr
({iγ5, G

−1}G{iγ5, G
−1}GAµAµ

)
+

1
8π2f2

π

∫
d4q

(2π)4i
Tr
({iγ5, G

−1}G)4 . (176)

This gives us an understanding of the scale of possible
pion contributions. It is interesting to note that (176) is
not an expression in terms of the Green’s functions, but
an equation for fπ.

In the next paper, it will be shown that the pion con-
tribution changes essentially the structure of the equation
for the Green’s function. The new equation has a solution
corresponding to the confined quark. At the same time,
the symmetry-breaking solution will not necessarily sur-
vive (at least if g(0) is large).
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